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JOINTS IN OPTIMUM FRAMEWORKS
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Abstract-An objection to the Michell theory of optimum frameworks is that many of the forms achieved
embody large numbers of joints, and the theory ignores the penalty in material or fabrication cost which these
entail. The paper investigates the forms of the optimum frameworks for some simple load systems when the
cost of joints is taken into account.

NOTATION

A area of triangle
u" Q2, QJ areas of sub-triangles as fractions of A

i, k suffices taking values I, 2, 3
j joint radius
1 length of member

L, 12 • I, lengths of members of tripedal framework
P external load

p, q perpendicular distances defined in Fig. 2
R force in member
s span of beam

s" S2. s, lengths of members of triangular framework
V volume of material

a. {3 angles defined in Figs. 3 and 4
(J' permissible stress

I. INTRODUCTION

Optimum structures are defined for our present purposes as those which react a given set of
forces with a minimum volume of material. The theory of optimum frameworks was first
developed by Maxwell [1] and Michell [2]. It has been extended to other types of structure and to
multiple loading systems by Foulkes [3], Hemp [4] and others. An earlier discussion of a particular
application of the concept will be found in Oliver Wendell Holmes [5].

One of the objections which is commonly raised to the practical application of optimum
frameworks is that many of the designs achieved embody very large numbers of joints, and the
cost (in material or money) of fabricating these joints would far exceed the saving in bar material
relative to a simpler but non-optimal structure. It is the purpose of the present paper to examine
the influence of joint cost on the forms of the optimum frameworks which react certain simple
but important load systems.

It is first necessary to define the material penalty involved in joining bars of the framework
together or in reacting the external forces. In an optimum structure al1 members are subjected to
the maximum permissible stress a which we shall assume to be the same in tension and
compression. We shall further assume that the material (or financial) cost of transferring a force
from a member to a gusset plate or other type of connection is proportional to the force
transferred: a valuable discussion of whether a linear relation or one based upon dimensional
similarity should be used is given in Cox [6]. Since all members are subjected to the same stress,
the force in a member is proportional to its cross-sectional area. It fol1ows that our assumption is
equivalent to adding to each member at a joint a constant length j, which we shal1 denote the joint
radius. The concept is shown in Fig. 1: any external force at the joint is connected through a
member of appropriate area and length j.

The value to be assigned to j will vary with the type of construction, For temporary joints j
may be quite large. It will be smaller for permanent bolted or riveted joints, smaller still for
welded joints and possibly least for some types of reinforced concrete frameworks. The value of
j will also depend on whether one is concerned with material consumption or the financial cost of
fabrication.

It will be seen that in a framework consisting of bars of length I carrying forces Rand
reacting external loads P the total volume V of material consumed is (l/a)IR(1 + 2j) + (l/a)IPj.
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Fig. I.

The second term is constant for a given load system, so that we are concerned with minimising
!,R (l +2j), instead of the usual Maxwell-Michell expression !'RI. The paper examines this
problem in relation to single-sign frameworks for the general three-load system and the full-space
and half-space frameworks for a beam carrying a central load.

2. SINGLE-SIGN FRAMEWORKS TO REACT THREE FORCES

We consider an equilibrium set of three forces PI, P2 and P3 applied at points D, E and F as
shown in Fig. 2. Then if the point of concurrence C of the forces lies within the triangle DEF
they can be reacted by a framework in which all of the bar forces have the same sign. There are
an unlimited number of such frameworks and we know from Maxwell [1] that they each employ
the same volume of material in the members. Minimising !,R (l +2j) thus reduces to minimising
!,R. Making the sum of the bar forces as small as possible implies using a small number of bars.
The minimum number of bars which can react the forces shown in Fig. 2 is three. They may be
arranged as CD, CE and CF, of lengths II, 12 and 13 , in which case the bar forces are PI, P2 and P3 ,

or as EF, FD and DE, of lengths St> S2 and S3, when we shall denote the bar forces by R" R2 and
R3•

Considering the second arrangement, we take moments about F for the equilibrium of joint D.
and obtain

where p and q are defined in Fig. 2.
Thus

R I - P lpllS3
31-

QS3

where a2A is the area of triangle CFD and A is the area of triangle DEF.

Fig. 2.



Similarly

Adding and dividing by II +12 ,

Summing for the three bar forces
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Since ai + ai+1 < 1 and Sk < Ik+1 + Ik + 2 , where i and k are 1,2 or 3, each of the factors of PI, P 2

and P 3 is less than unity. It follows that

and the forces should be reacted by a triangular rather than a tripedal framework.

3. THE BEAM CARRYING A CENTRAL LOAD

3.1 Full-space framework
The general case of the singly symmetrical three-load system is discussed in Parkes [7]. The

particular solution when the loads are parallel was first given by Michell [2]. The Michell optimum
beam, where there is no restriction on the space which the structure can occupy, is shown in Fig.
3(a). The volume V of the bar material is G+ 1T14)Ps la, so that ValPs is equal to 1·2854. The
framework has an infinite number of joints, so that for non-zero values of i it cannot be the
optimum form.

Fig. 3(b) shows a framework with five joints which is the optimum form for large values of j.
The total volume of material is given by

ValPs = ~(cosec a sec a +tan a) +(j Is)(2 cosec a +4).

This is a minimum when

ils = (2 tan2 a -1)/4cos a.

For i = 0, tan a = 1/Vi and ValPs is equal to Vi. For other values of ils the volume is plotted
in Fig. 5 and the angle a in Fig. 7.

Figure 3(c) shows a framework with seven joints. The volume is given by

Va/Ps = Hcot f3 +(sin a cosec (3 +sin f3 cosec a) cosec (a + (3)}

+(i Is )(cot a +cot f3 +2 cosec a +2 cosec f3 +2).

Differentiating with respect to a and f3 we obtain two simultaneous equations for minimum

(0) (b)

Fig. 3.
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volume which can be re-phrased, with considerable algebraic manipulation, as

~(2 sin" (\' - sin" f3)+ (j /s J{(2 cos f3 + I) sin" (\' - (2 cos (\' + I) sin" f3} = 0

and

H(2 sin" (\' - sin" f3) cos ((\' + f3 )+ sin ((\' + 2f3 ) sin f3} cosec ((\' + f3)

+(j/s){(2 cos f3 + I) sin (\' cos (\' + (2 cos (\' + I) sin f3 cos f3} = O.

For j = 0, (\' = sin-1C'/7/4), f3 = sin-\'/T4/4) and Vu/Ps = V7/2 = 1·3229. For other values of j,
we eliminate j /s between the two preceding equations and obtain

sin (\' (l + 4 cos (\' - 2cos f3) sin ((\' + 2f3) + (l + 2 cos f3 )(2 sin" (\' - sin" f3) = o.

This equation can be solved to provide corresponding pairs of values for (\' and f3 and these can
be substituted in one of the preceding equations to find j/s and thence Vu/Ps. The volume is
plotted in Fig. 5 and the values of (\' and f3 in Fig. 7.

On examining Fig. 5 it will be seen that for values of j /s less than about 0·093 the framework
with seven joints has a smaller total volume than that with five joints. Frameworks with 9, II,
13 .... joints could be devised, each approximating more closely to the Michell form, which would
"round-in" the corner between the 7-joint and cc-joint (Michell) lines in Fig. 5. The potential gain
is, however, very small since the difference between the Michell and 7-joint volumes at j =0 is
less than 3 per cent. It seems likely that in the present case each of the frameworks with 5. 7, 9,
II, 13 .... joints would contribute to the final minimum volume polygon in Fig. 5. However, each
member of a series of frameworks with ascending numbers of joints is not necessarily a minimum
volume framework at some value of j, as will be seen when we consider the half-space beam (3.2).

Because of the convex form of the polygon of minimum volume. the penalty associated with
the joint material increases less severely than a linear function of the joint radius. For j /s = 0·1.
the framework uses 67 per cent more material than the Michell form (j/s = 0). For j /s = O· 2
there is 122 per cent of additional material.

3.2 Half-space framework
The Michell optimum beam. where the structure is required to lie on one side only of the line

joining the supports, is shown in Fig. 4(a). Vu/Ps is equal to 1T/2. The framework with the least
number of joints which is capable of reacting the loads is shown in Fig. 4(b). It has four joints and
its volume is given by

Vu/Ps = cosec (\' sec (\' + (j/s)(2 cosec (\' + 2 cot (\' +4).

This is a minimum when

j/s = (tan" (\' -1)/20 + cos (\').

p p P
2 2

I. ./
(0) (b) (c)

Fig. 4.



Joints in optimum frameworks 1021

For j =0, a = 1T14 and Va IPs is equal to 2. For other values of j Is the volume is plotted in Fig. 6
and the angle a in Fig. 7.

Fig. 4(c) shows a five-joint framework lying entirely in the half-space above the line joining
the supports. Its volume is given by

Val Ps = Mcot a +cot {3 + (sin a cosec {3 +sin (3 cosec a) cosec (a + (3)}

+(jIs )(3 cot a +cot {3 +2cosec a +2cosec (3 +2).

Differentiating with respect to a and {3 we obtain two equations which can be re-combined to
give

sin2 a - sin2 {3 +(jIs ){(2 cos (3 + 1) sin2 a - (2 cos a +3) sin2 {3} = 0

3

Va
Ps

2

o 0·/

number
of joints

j Is

Fig. 5. Volumes of full-space optimum beams.
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Fig. 6. Volumes of half-space optimum beams.
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and

E. W. PARKES

H(sin2
a +sin2 (3) cot (a + (3) +sin a cos a +sin {3 cos {3}

+(j /s){(2 cos (3 + 1) sin a cos a + (2 cos a +3) sin {3 cos {3} = o.

When j = 0, a == {3 == 7T /3 and V(1/Ps is equal to v'3, some 10 per cent higher. than the Michell
value. For other values of j, we eliminate j /s and obtain

(2 cos a +3) sin a sin (a +2(3) - (2 cos (3 + 1) sin {3 sin (2a + (3) = O.

This equation can be solved to provide corresponding pairs of values for a and {3 (in fact (3 is
almost invariant at 7T /3 for a considerable range of a). These values of a and {3 are then
substituted in one of the preceding equations to determine j /s and thence V(1/Ps. The volume is
plotted in Fig. 6 and the angles a and {3 in Fig. 7.

o
80

fJ, 7

o
20 -- full space

- - half space

fJ,7 angle, joints

o 0·1 j / s 0·2

Fig. 7. Angles of optimum frameworks.

On examining Fig. 6 it will be seen that the volume of the five-joint framework is always less
than that of the four-joint framework and so the line corresponding to this latter structure never
forms part of the polygon of minimum volume. It would, of course, be possible to find
frameworks having more than five joints to "round-in" the corner between the five-joint and
oo-joint (Michell) lines in Fig. 6.

For j /s = 0'1, the material consumption is 65 per cent greater than for the Michell optimum
beam, and for j /s = 0·2 the excess is 116 per cent, values which are very similar to those for the
full-space framework.
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